Exclusive SALE Offer Today

The Google Cloud for ML with TensorFlow Big Data with Managed Hadoop: The Google Cloud for ML with TensorFlow, Big Data with Managed Hadoop

Best Seller 164 Lectures 22h 40m 15s
Prepare for your Microsoft examination with our training course. The No_code course contains a complete batch of videos that will provide you with profound and thorough knowledge related to Microsoft certification exam. Pass the Microsoft No_code test with flying colors.
$13.99$24.99
Curriculum For This Course

  • 1. Compute Options 9m 16s
  • 2. Google Compute Engine (GCE) 7m 38s
  • 3. More GCE 8m 12s
  • 4. Lab: Creating a VM Instance 5m 59s
  • 5. Lab: Editing a VM Instance 4m 45s
  • 6. Lab: Creating a VM Instance Using The Command Line 4m 43s
  • 7. Lab: Creating And Attaching A Persistent Disk 4m
  • 8. Google Container Engine - Kubernetes (GKE) 10m 33s
  • 9. More GKE 9m 54s
  • 10. Lab: Creating A Kubernetes Cluster And Deploying A Wordpress Container 6m 55s
  • 11. App Engine 6m 48s
  • 12. Contrasting App Engine, Compute Engine and Container Engine 6m 3s
  • 13. Lab: Deploy And Run An App Engine App 7m 29s
  • 1. Storage Options 9m 48s
  • 2. Quick Take 13m 41s
  • 3. Cloud Storage 10m 37s
  • 4. Lab: Working With Cloud Storage Buckets 5m 25s
  • 5. Lab: Bucket And Object Permissions 3m 52s
  • 6. Lab: Life cycle Management On Buckets 5m 6s
  • 7. Lab: Running A Program On a VM Instance And Storing Results on Cloud Storage 7m 9s
  • 8. Transfer Service 5m 7s
  • 9. Lab: Migrating Data Using The Transfer Service 5m 33s
  • 1. Cloud SQL 7m 40s
  • 2. Lab: Creating A Cloud SQL Instance 7m 55s
  • 3. Lab: Running Commands On Cloud SQL Instance 6m 31s
  • 4. Lab: Bulk Loading Data Into Cloud SQL Tables 9m 9s
  • 5. Cloud Spanner 7m 25s
  • 6. More Cloud Spanner 9m 18s
  • 7. Lab: Working With Cloud Spanner 6m 50s
  • 1. BigTable Intro 7m 57s
  • 2. Columnar Store 8m 12s
  • 3. Denormalised 9m 2s
  • 4. Column Families 8m 10s
  • 5. BigTable Performance 13m 19s
  • 6. Lab: BigTable demo 7m 39s
  • 1. Datastore 14m 10s
  • 2. Lab: Datastore demo 6m 42s
  • 1. BigQuery Intro 11m 3s
  • 2. BigQuery Advanced 10m
  • 3. Lab: Loading CSV Data Into Big Query 9m 4s
  • 4. Lab: Running Queries On Big Query 5m 26s
  • 5. Lab: Loading JSON Data With Nested Tables 7m 28s
  • 6. Lab: Public Datasets In Big Query 8m 16s
  • 7. Lab: Using Big Query Via The Command Line 7m 45s
  • 8. Lab: Aggregations And Conditionals In Aggregations 9m 51s
  • 9. Lab: Subqueries And Joins 5m 44s
  • 10. Lab: Regular Expressions In Legacy SQL 5m 36s
  • 11. Lab: Using The With Statement For SubQueries 10m 45s
  • 1. Data Flow Intro 11m 4s
  • 2. Apache Beam 3m 42s
  • 3. Lab: Running A Python Data flow Program 12m 56s
  • 4. Lab: Running A Java Data flow Program 13m 42s
  • 5. Lab: Implementing Word Count In Dataflow Java 11m 18s
  • 6. Lab: Executing The Word Count Dataflow 4m 37s
  • 7. Lab: Executing MapReduce In Dataflow In Python 9m 50s
  • 8. Lab: Executing MapReduce In Dataflow In Java 6m 8s
  • 9. Lab: Dataflow With Big Query As Source And Side Inputs 15m 50s
  • 10. Lab: Dataflow With Big Query As Source And Side Inputs 2 6m 28s
  • 1. Data Proc 8m 28s
  • 2. Lab: Creating And Managing A Dataproc Cluster 8m 11s
  • 3. Lab: Creating A Firewall Rule To Access Dataproc 8m 25s
  • 4. Lab: Running A PySpark Job On Dataproc 7m 39s
  • 5. Lab: Running The PySpark REPL Shell And Pig Scripts On Dataproc 8m 44s
  • 6. Lab: Submitting A Spark Jar To Dataproc 2m 10s
  • 7. Lab: Working With Dataproc Using The GCloud CLI 8m 19s
  • 1. Pub Sub 8m 23s
  • 2. Lab: Working With Pubsub On The Command Line 5m 35s
  • 3. Lab: Working With PubSub Using The Web Console 4m 40s
  • 4. Lab: Setting Up A Pubsub Publisher Using The Python Library 5m 52s
  • 5. Lab: Setting Up A Pubsub Subscriber Using The Python Library 4m 8s
  • 6. Lab: Publishing Streaming Data Into Pubsub 8m 18s
  • 7. Lab: Reading Streaming Data From PubSub And Writing To BigQuery 10m 14s
  • 8. Lab: Executing A Pipeline To Read Streaming Data And Write To BigQuery 5m 54s
  • 9. Lab: Pubsub Source BigQuery Sink 10m 20s
  • 1. Data Lab 3m
  • 2. Lab: Creating And Working On A Datalab Instance 10m 30s
  • 3. Lab: Importing And Exporting Data Using Datalab 12m 14s
  • 4. Lab: Using The Charting API In Datalab 6m 43s
  • 1. Introducing Machine Learning 8m 4s
  • 2. Representation Learning 10m 27s
  • 3. NN Introduced 7m 35s
  • 4. Introducing TF 7m 16s
  • 5. Lab: Simple Math Operations 8m 46s
  • 6. Computation Graph 10m 17s
  • 7. Tensors 9m 2s
  • 8. Lab: Tensors 5m 3s
  • 9. Linear Regression Intro 9m 57s
  • 10. Placeholders and Variables 8m 44s
  • 11. Lab: Placeholders 6m 37s
  • 12. Lab: Variables 7m 49s
  • 13. Lab: Linear Regression with Made-up Data 4m 52s
  • 14. Image Processing 8m 6s
  • 15. Images As Tensors 8m 16s
  • 16. Lab: Reading and Working with Images 8m 6s
  • 17. Lab: Image Transformations 6m 37s
  • 18. Introducing MNIST 4m 13s
  • 19. K-Nearest Neigbors as Unsupervised Learning 7m 43s
  • 20. One-hot Notation and L1 Distance 7m 31s
  • 21. Steps in the K-Nearest-Neighbors Implementation 9m 32s
  • 22. Lab: K-Nearest-Neighbors 14m 14s
  • 23. Learning Algorithm 10m 59s
  • 24. Individual Neuron 9m 52s
  • 25. Learning Regression 7m 51s
  • 26. Learning XOR 10m 27s
  • 27. XOR Trained 11m 11s
  • 1. Lab: Access Data from Yahoo Finance 2m 49s
  • 2. Non TensorFlow Regression 8m 5s
  • 3. Lab: Linear Regression - Setting Up a Baseline 11m 19s
  • 4. Gradient Descent 9m 57s
  • 5. Lab: Linear Regression 14m 42s
  • 6. Lab: Multiple Regression in TensorFlow 9m 16s
  • 7. Logistic Regression Introduced 10m 16s
  • 8. Linear Classification 5m 25s
  • 9. Lab: Logistic Regression - Setting Up a Baseline 7m 33s
  • 10. Logit 8m 33s
  • 11. Softmax 11m 55s
  • 12. Argmax 12m 13s
  • 13. Lab: Logistic Regression 16m 56s
  • 14. Estimators 4m 10s
  • 15. Lab: Linear Regression using Estimators 7m 49s
  • 16. Lab: Logistic Regression using Estimators 4m 54s
  • 1. Lab: Taxicab Prediction - Setting up the dataset 14m 38s
  • 2. Lab: Taxicab Prediction - Training and Running the model 11m 22s
  • 3. Lab: The Vision, Translate, NLP and Speech API 10m 54s
  • 4. Lab: The Vision API for Label and Landmark Detection 7m
  • 1. Virtual Private Clouds 7m 4s
  • 2. VPC and Firewalls 9m 26s
  • 3. XPC or Shared VPC 7m 39s
  • 4. VPN 8m 49s
  • 5. Types of Load Balancing 6m 46s
  • 6. Proxy and Pass-through load balancing 9m 49s
  • 7. Internal load balancing 6m 2s
  • 1. StackDriver 12m 8s
  • 2. StackDriver Logging 7m 39s
  • 3. Cloud Deployment Manager 6m 6s
  • 4. Cloud Endpoints 3m 48s
  • 5. Security and Service Accounts 7m 44s
  • 6. OAuth and End-user accounts 8m 31s
  • 7. Identity and Access Management 8m 31s
  • 8. Data Protection 12m 2s
  • 1. Introducing the Hadoop Ecosystem 1m 35s
  • 2. Hadoop 9m 43s
  • 3. HDFS 10m 55s
  • 4. MapReduce 10m 34s
  • 5. Yarn 5m 29s
  • 6. Hive 7m 19s
  • 7. Hive vs 7m 10s
  • 8. HQL vs 7m 36s
  • 9. OLAP in Hive 7m 34s
  • 10. Windowing Hive 8m 22s
  • 11. Pig 8m 4s
  • 12. More Pig 6m 38s
  • 13. Spark 8m 55s
  • 14. More Spark 11m 45s
  • 15. Streams Intro 7m 44s
  • 16. Microbatches 5m 41s
  • 17. Window Types 5m 46s

How to Open Test Engine .dumpsarena Files

Use FREE DumpsArena Test Engine player to open .dumpsarena files

DumpsArena Test Engine

Windows

Refund Policy
Refund Policy

DumpsArena.com has a remarkable success record. We're confident of our products and provide a no hassle refund policy.

How our refund policy works?

safe checkout

Your purchase with DumpsArena.com is safe and fast.

The DumpsArena.com website is protected by 256-bit SSL from Cloudflare, the leader in online security.

Need Help Assistance?