Exclusive SALE Offer Today

Professional Data Engineer: Professional Data Engineer on Google Cloud Platform

Best Seller 201 Lectures 27h 43m 25s
Prepare for your Google examination with our training course. The Professional-Data-Engineer course contains a complete batch of videos that will provide you with profound and thorough knowledge related to Google certification exam. Pass the Google Professional-Data-Engineer test with flying colors.
$14.99$24.99
Curriculum For This Course

  • 1. Theory, Practice and Tests 10m 26s
  • 2. Lab: Setting Up A GCP Account 7m
  • 3. Lab: Using The Cloud Shell 6m 1s
  • 1. Compute Options 9m 16s
  • 2. Google Compute Engine (GCE) 7m 38s
  • 3. Lab: Creating a VM Instance 5m 59s
  • 4. More GCE 8m 12s
  • 5. Lab: Editing a VM Instance 4m 45s
  • 6. Lab: Creating a VM Instance Using The Command Line 4m 43s
  • 7. Lab: Creating And Attaching A Persistent Disk 4m
  • 8. Google Container Engine - Kubernetes (GKE) 10m 33s
  • 9. More GKE 9m 54s
  • 10. Lab: Creating A Kubernetes Cluster And Deploying A Wordpress Container 6m 55s
  • 11. App Engine 6m 48s
  • 12. Contrasting App Engine, Compute Engine and Container Engine 6m 3s
  • 13. Lab: Deploy And Run An App Engine App 7m 29s
  • 1. Storage Options 9m 48s
  • 2. Quick Take 13m 41s
  • 3. Cloud Storage 10m 37s
  • 4. Lab: Working With Cloud Storage Buckets 5m 25s
  • 5. Lab: Bucket And Object Permissions 3m 52s
  • 6. Lab: Life cycle Management On Buckets 3m 12s
  • 7. Lab: Running A Program On a VM Instance And Storing Results on Cloud Storage 7m 9s
  • 8. Transfer Service 5m 7s
  • 9. Lab: Migrating Data Using The Transfer Service 5m 32s
  • 10. Lab: Cloud Storage ACLs and API access with Service Account 7m 50s
  • 11. Lab: Cloud Storage Customer-Supplied Encryption Keys and Life-Cycle Management 9m 28s
  • 12. Lab: Cloud Storage Versioning, Directory Sync 8m 42s
  • 1. Cloud SQL 7m 40s
  • 2. Lab: Creating A Cloud SQL Instance 7m 55s
  • 3. Lab: Running Commands On Cloud SQL Instance 6m 31s
  • 4. Lab: Bulk Loading Data Into Cloud SQL Tables 9m 9s
  • 5. Cloud Spanner 7m 25s
  • 6. More Cloud Spanner 9m 18s
  • 7. Lab: Working With Cloud Spanner 6m 49s
  • 1. BigTable Intro 7m 57s
  • 2. Columnar Store 8m 12s
  • 3. Denormalised 9m 2s
  • 4. Column Families 8m 10s
  • 5. BigTable Performance 13m 19s
  • 6. Lab: BigTable demo 7m 39s
  • 1. Datastore 14m 10s
  • 2. Lab: Datastore demo 6m 42s
  • 1. BigQuery Intro 11m 3s
  • 2. BigQuery Advanced 9m 59s
  • 3. Lab: Loading CSV Data Into Big Query 9m 4s
  • 4. Lab: Running Queries On Big Query 5m 26s
  • 5. Lab: Loading JSON Data With Nested Tables 7m 28s
  • 6. Lab: Public Datasets In Big Query 8m 16s
  • 7. Lab: Using Big Query Via The Command Line 7m 45s
  • 8. Lab: Aggregations And Conditionals In Aggregations 9m 51s
  • 9. Lab: Subqueries And Joins 5m 44s
  • 10. Lab: Regular Expressions In Legacy SQL 5m 36s
  • 11. Lab: Using The With Statement For SubQueries 10m 45s
  • 1. Data Flow Intro 11m 4s
  • 2. Apache Beam 3m 42s
  • 3. Lab: Running A Python Data flow Program 12m 56s
  • 4. Lab: Running A Java Data flow Program 13m 42s
  • 5. Lab: Implementing Word Count In Dataflow Java 11m 17s
  • 6. Lab: Executing The Word Count Dataflow 4m 37s
  • 7. Lab: Executing MapReduce In Dataflow In Python 9m 50s
  • 8. Lab: Executing MapReduce In Dataflow In Java 6m 8s
  • 9. Lab: Dataflow With Big Query As Source And Side Inputs 15m 50s
  • 10. Lab: Dataflow With Big Query As Source And Side Inputs 2 6m 28s
  • 1. Data Proc 8m 28s
  • 2. Lab: Creating And Managing A Dataproc Cluster 8m 11s
  • 3. Lab: Creating A Firewall Rule To Access Dataproc 8m 25s
  • 4. Lab: Running A PySpark Job On Dataproc 7m 39s
  • 5. Lab: Running The PySpark REPL Shell And Pig Scripts On Dataproc 8m 44s
  • 6. Lab: Submitting A Spark Jar To Dataproc 2m 10s
  • 7. Lab: Working With Dataproc Using The GCloud CLI 8m 19s
  • 1. Pub Sub 8m 23s
  • 2. Lab: Working With Pubsub On The Command Line 5m 35s
  • 3. Lab: Working With PubSub Using The Web Console 4m 40s
  • 4. Lab: Setting Up A Pubsub Publisher Using The Python Library 5m 52s
  • 5. Lab: Setting Up A Pubsub Subscriber Using The Python Library 4m 8s
  • 6. Lab: Publishing Streaming Data Into Pubsub 8m 18s
  • 7. Lab: Reading Streaming Data From PubSub And Writing To BigQuery 10m 14s
  • 8. Lab: Executing A Pipeline To Read Streaming Data And Write To BigQuery 5m 54s
  • 9. Lab: Pubsub Source BigQuery Sink 10m 20s
  • 1. Data Lab 3m
  • 2. Lab: Creating And Working On A Datalab Instance 4m 1s
  • 3. Lab: Importing And Exporting Data Using Datalab 12m 14s
  • 4. Lab: Using The Charting API In Datalab 6m 43s
  • 1. Introducing Machine Learning 8m 4s
  • 2. Representation Learning 10m 27s
  • 3. NN Introduced 7m 35s
  • 4. Introducing TF 7m 16s
  • 5. Lab: Simple Math Operations 8m 46s
  • 6. Computation Graph 10m 17s
  • 7. Tensors 9m 2s
  • 8. Lab: Tensors 5m 3s
  • 9. Linear Regression Intro 9m 57s
  • 10. Placeholders and Variables 8m 44s
  • 11. Lab: Placeholders 6m 36s
  • 12. Lab: Variables 7m 49s
  • 13. Lab: Linear Regression with Made-up Data 4m 52s
  • 14. Image Processing 8m 5s
  • 15. Images As Tensors 8m 16s
  • 16. Lab: Reading and Working with Images 8m 6s
  • 17. Lab: Image Transformations 6m 37s
  • 18. Introducing MNIST 4m 13s
  • 19. K-Nearest Neigbors 7m 42s
  • 20. One-hot Notation and L1 Distance 7m 31s
  • 21. Steps in the K-Nearest-Neighbors Implementation 9m 32s
  • 22. Lab: K-Nearest-Neighbors 14m 14s
  • 23. Learning Algorithm 10m 58s
  • 24. Individual Neuron 9m 52s
  • 25. Learning Regression 7m 51s
  • 26. Learning XOR 10m 27s
  • 27. XOR Trained 11m 11s
  • 1. Lab: Access Data from Yahoo Finance 2m 49s
  • 2. Non TensorFlow Regression 5m 53s
  • 3. Lab: Linear Regression - Setting Up a Baseline 11m 19s
  • 4. Gradient Descent 9m 56s
  • 5. Lab: Linear Regression 14m 42s
  • 6. Lab: Multiple Regression in TensorFlow 9m 15s
  • 7. Logistic Regression Introduced 10m 16s
  • 8. Linear Classification 5m 25s
  • 9. Lab: Logistic Regression - Setting Up a Baseline 7m 33s
  • 10. Logit 8m 33s
  • 11. Softmax 11m 55s
  • 12. Argmax 12m 13s
  • 13. Lab: Logistic Regression 16m 56s
  • 14. Estimators 4m 10s
  • 15. Lab: Linear Regression using Estimators 7m 49s
  • 16. Lab: Logistic Regression using Estimators 4m 54s
  • 1. Lab: Taxicab Prediction - Setting up the dataset 14m 38s
  • 2. Lab: Taxicab Prediction - Training and Running the model 11m 22s
  • 3. Lab: The Vision, Translate, NLP and Speech API 10m 54s
  • 4. Lab: The Vision API for Label and Landmark Detection 7m
  • 1. Live Migration 10m 17s
  • 2. Machine Types and Billing 9m 21s
  • 3. Sustained Use and Committed Use Discounts 7m 3s
  • 4. Rightsizing Recommendations 2m 22s
  • 5. RAM Disk 2m 7s
  • 6. Images 7m 45s
  • 7. Startup Scripts And Baked Images 7m 31s
  • 1. VPCs And Subnets 11m 14s
  • 2. Global VPCs, Regional Subnets 11m 19s
  • 3. IP Addresses 11m 39s
  • 4. Lab: Working with Static IP Addresses 5m 46s
  • 5. Routes 7m 36s
  • 6. Firewall Rules 15m 33s
  • 7. Lab: Working with Firewalls 7m 5s
  • 8. Lab: Working with Auto Mode and Custom Mode Networks 19m 32s
  • 9. Lab: Bastion Host 7m 10s
  • 10. Cloud VPN 7m 27s
  • 11. Lab: Working with Cloud VPN 11m 11s
  • 12. Cloud Router 10m 31s
  • 13. Lab: Using Cloud Routers for Dynamic Routing 14m 7s
  • 14. Dedicated Interconnect Direct and Carrier Peering 8m 10s
  • 15. Shared VPCs 10m 11s
  • 16. Lab: Shared VPCs 6m 17s
  • 17. VPC Network Peering 10m 10s
  • 18. Lab: VPC Peering 7m 17s
  • 19. Cloud DNS And Legacy Networks 5m 19s
  • 1. Managed and Unmanaged Instance Groups 10m 53s
  • 2. Types of Load Balancing 5m 46s
  • 3. Overview of HTTP(S) Load Balancing 9m 20s
  • 4. Forwarding Rules Target Proxy and Url Maps 8m 31s
  • 5. Backend Service and Backends 9m 28s
  • 6. Load Distribution and Firewall Rules 4m 28s
  • 7. Lab: HTTP(S) Load Balancing 11m 21s
  • 8. Lab: Content Based Load Balancing 7m 6s
  • 9. SSL Proxy and TCP Proxy Load Balancing 5m 6s
  • 10. Lab: SSL Proxy Load Balancing 7m 49s
  • 11. Network Load Balancing 5m 8s
  • 12. Internal Load Balancing 7m 16s
  • 13. Autoscalers 11m 52s
  • 14. Lab: Autoscaling with Managed Instance Groups 12m 22s
  • 1. StackDriver 12m 8s
  • 2. StackDriver Logging 7m 39s
  • 3. Lab: Stackdriver Resource Monitoring 8m 12s
  • 4. Lab: Stackdriver Error Reporting and Debugging 5m 52s
  • 5. Cloud Deployment Manager 6m 5s
  • 6. Lab: Using Deployment Manager 5m 10s
  • 7. Lab: Deployment Manager and Stackdriver 8m 27s
  • 8. Cloud Endpoints 3m 48s
  • 9. Cloud IAM: User accounts, Service accounts, API Credentials 8m 53s
  • 10. Cloud IAM: Roles, Identity-Aware Proxy, Best Practices 9m 31s
  • 11. Lab: Cloud IAM 11m 57s
  • 12. Data Protection 12m 2s
  • 1. Introducing the Hadoop Ecosystem 1m 34s
  • 2. Hadoop 9m 43s
  • 3. HDFS 10m 55s
  • 4. MapReduce 10m 34s
  • 5. Yarn 5m 29s
  • 6. Hive 7m 19s
  • 7. Hive vs 7m 10s
  • 8. HQL vs 7m 36s
  • 9. OLAP in Hive 7m 34s
  • 10. Windowing Hive 8m 22s
  • 11. Pig 8m 4s
  • 12. More Pig 6m 38s
  • 13. Spark 8m 54s
  • 14. More Spark 11m 45s
  • 15. Streams Intro 7m 44s
  • 16. Microbatches 5m 40s
  • 17. Window Types 5m 46s

How to Open Test Engine .dumpsarena Files

Use FREE DumpsArena Test Engine player to open .dumpsarena files

DumpsArena Test Engine

Windows

Refund Policy
Refund Policy

DumpsArena.com has a remarkable success record. We're confident of our products and provide a no hassle refund policy.

How our refund policy works?

safe checkout

Your purchase with DumpsArena.com is safe and fast.

The DumpsArena.com website is protected by 256-bit SSL from Cloudflare, the leader in online security.

Need Help Assistance?